This website uses its own and third-party cookies. Some of these cookies are used to develop analytical statistics of visits to the webpage, others to manage advertising or even others are necessary for the correct management of the site. If you continue to browse or click in accept we consider you accept the conditions for their use. You can get more information, or learn how to change the settings in our cookies policy?
Versión Española Versión Mexicana Ibercampus English Version Version française Versione italiana

15/7/2020  
    Ibercampus  | Editorial Board | Who we are | Ideology | Contact | Advertising rates | Subscription | RSS RSS
Policies
Inclusion policies
R&D
Employment
Economics
Culture
Green strategies
Health
Society and consumer
Sports
Debates
Interviews
Education
Grants & internships
Training
Trends
Enterprises & CSR
 Enterprises & CSR
ACNUR
AEGON
AIR LIQUIDE
ALCATEL-LUCENT
ALLIANZ
ARCELORMITTAL
ASIFIN
ASSICURAZIONI GENERALI
AXA
BANCO SANTANDER
BASF
BAYER
BBVA
BNP PARIBAS
CARREFOUR
DAIMLER AG
DEUTSCHE BANK
DEUTSCHE BÖRSE
DEUTSCHE TELEKOM
E.ON
ENEL
ENI
FORTIS
FRANCE TÉLÉCOM
GROUPE DANONE
IBERDROLA
INDITEX
ING GROUP
INTESA SANPAOLO
L'ORÉAL
LVMH
MUNICH RE
NOKIA
PHILIPS
RENAULT
REPSOL YPF
RWE
SAINT GOBAIN
SANOFI-AVENTIS
SAP AG
SCHNEIDER ELECTRIC
SIEMENS AG
SOCIÉTÉ GÉNÉRALE
SUEZ
TELECOM ITALIA
TELEFÓNICA
TOTAL S.A.
UNICREDIT
UNILEVER
VINCI
VIVENDI
VOLKSWAGEN

R&D
When the body is inclined slope,it flattens

Develop robots that move like snakes on sand


Limbless organisms such as snakes can navigate nearly all terrain. In particular, desert-dwelling sidewinder rattlesnakes (Crotalus cerastes) operate effectively on inclined granular media (such as sand dunes) that induce failure in field-tested limbless robots through slipping and pitching. Our laboratory experiments reveal that as granular incline angle increases, sidewinder rattlesnakes increase the length of their body in contact with the sand.
Ibercampus 10/10/2014 Send to a friend
Comparte esta noticia en TwitterFacebookTwitterdel.icio.usYahooRSS
 Implementing this strategy in a physical robot model of the snake enables the device to ascend sandy slopes close to the angle of maximum slope stability. Plate drag experiments demonstrate that granular yield stresses decrease with increasing incline angle. Together, these three approaches demonstrate how sidewinding with contact-length control mitigates failure on granular media.

"Initially, we thought to use the robot as a physical model to learn from the snakes," says Daniel Goldman, professor (USA) Technological College of Physics Georgia. "Through the simultaneous study of both, we recorded important general principles that allowed us to understand the animal and improve the robot".

Based on these observations, the scientists found that the snakes, contact a sloping, unstable surface such as sand elevations are increased the length of his body, according to the inclination of the surface, they did in varying degrees.

"The serpent rises some segments of the body while keeping others on the floor, and as the slope inclines more, your body is flattened," says Howie Choset, a professor of robotics at Carnegie Mellon.

No off the ground

To determine the movement patterns, the team investigated the robot and snakes in a circular enclosure sand. In this area, built in Zoo Atlanta, placed six types of snakes that use this movement to see how they climbed the mounds of sand in different inclinations. Calculated how far penetrated the sand, how many points of contact were established between the body and the surface, and how this behavior changed depending on the type of slope.

Researchers realized that snakes are not slipped despite the inclination, but that movement was they got moving. As the slope was steeper, snakes increased the length of its body.

Next, the researchers reconstructed the robot movement that successfully emulated the ability of snakes.

This perspective, which highlights how scientists find in nature biological principles install robots, managed to develop, thanks to this, new capabilities: more speed, better glide and flight, among others.

Other issues R&D
China, Germany, Japan, Korea and the United States dominate global innovation - WIPO report 2019
New methodology developed to monitor patients with glioblastoma
Scientists find a place on Earth where there is no life
The embryonic origin of the Cyclops eye
Graphene activates immune cells helping bone regeneration in mice
Jurassic dinosaurs could have been dispersed between Africa and Europe 145 years ago
China´s Chang´e-4 probe lands on the moon
Artificial intelligence for studying the ancient human populations of Patagonia.
Chinese and European scientists propose 28 complementary colours
EU-wide rules for safety of drones approved by European Parliament

Subscribe free to our newsletter
Human Capital
Mobilizing commitment around change
Marta Santos Romero
Vanity Fea
Let´s get serious with Coronavirus
José Ángel García Landa
We can all be leaders
VIDEOCOMMUTING A NEW ORGANIZATIONAL REALITY THAT POSITIVELY IMPACTS EMPLOYEES
Mar Souto Romero
Financial inclusion
Financial Education For All!
Carlos Trias
Brusselian Lights
European elections (I): which words are more used in the European political manifestos?
Raúl Muriel Carrasco
Humor and Political Communication
Comisión de Arbitraje, Quejas y Deontología (Spain) (3) You can´t be too careful
Felicísimo Valbuena
Want your own blog? Want to be read by universities?
Find out here
Books
"Tthe study of human behaviour was political from the beginning"
The EU "An Obituary"
Startup Cities "Why Only a Few Cities Dominate the Global Startup Scene"
Blockchain Revolution "How the Technology Behind Bitcoin and Cryptocurrency Is Changing the World "
Doughnut Economics "Seven Ways to Think Like a 21st-Century Economist "
The People vs Tech "How the Internet Is Killing Democracy"
Theses and dissertations
1 Mobilizing commitment around change
Legal Advise | Privacy Policy | Editorial Board | Who we are | Ideology | Contact | Advertising rates | RSS RSS